2024
Michael Seidel
Efficient coupling of single epitaxial quantum dots to plasmonic waveguides
Dissertation, Bayreuth (2024) online, ERef, abstract: show
Metallic nanostructures can confine electromagnetic fields far below the optical
wavelength, thus circumventing the diffraction limit. Surface plasmon polaritons,
the collective oscillations of conduction band electrons coupled to electromagnetic
waves, are associated with high amplitudes of the electric field, concentrated in tiny
volumes. This local field enhancement can manipulate the light-matter interaction
at the nanoscale. In particular, the coupling of plasmonic waveguides to individual
quantum emitters offers exciting prospects. For instance, one could envision
a nanocircuit in which the presence or absence of a single photon controls the
transmission of another photon, i.e., a single-photon transistor. An ideal quantum
plasmonic nanocircuit would feature a source of indistinguishable photons that is
coupled with near-unity efficiency to a low-loss single-mode waveguide, with an
enhanced emission rate due to the Purcell effect. For such an application, excellent
single-photon sources are essential. Epitaxially grown semiconductor quantum dots
are considered a near-ideal quantum light source due to their brightness, stability,
and narrowband excitonic transitions. On the other hand, wet-chemically grown
single-crystalline silver nanowires exhibit strong confinement, single-mode operation,
and the lowest propagation losses of plasmonic waveguides in the visible
and infrared. As promising as the direct combination of near-surface epitaxial quantum
dots and silver nanowires seems to be, it faces tremendous challenges that
include reduced photon extraction as well as high attenuation of the propagating
plasmon, both consequences of the high refractive index environment of the bulky
semiconductor host. These and other issues are addressed in this thesis through
novel coupling schemes that are numerically modeled, experimentally realized and
optically characterized.
The thesis begins with a compact theoretical framework that covers the fundamentals
of epitaxial quantum dots, the electromagnetics of propagating surface plasmons,
and the modeling of emitters in the vicinity of plasmonic waveguides. Two- and
three-dimensional finite element models are used to describe guided plasmonic
modes at nanowires, as well as the coupling of quantum emitters into such waveguide
modes. Quantities such as the effective mode index, the coupling efficiency,
and the Purcell factor are introduced. In contrast to most other works, plasmonic
waveguides in inhomogeneous environments, given by semiconducting substrates,
are also considered. For the experimental characterization, different optical imaging
techniques operating at cryogenic temperatures (20 K), including cathodoluminescence
spectroscopy, confocal laser scanning, and photoluminescence imaging, are
applied.
The first presented quantum dot–plasmon coupling scheme is termed intermediate
field coupling. It relies on a planar dielectric layer (n = 1.4), acting as a spacer between
the semiconductor substrate (n = 3.4) containing the GaAs quantum dot and the plasmonic waveguide. By tuning the film thickness, one can accomplish
either efficient quantum dot–waveguide coupling or efficient waveguide propagation.
Numerical simulations show that the optimal overall performance is not achieved
in the near field but in the intermediate field for a film thickness around 130 nm.
The experimental conditions for such an intermediate field coupling are provided by
simply spin-coating a low-index dielectric and dispersing silver nanowires. When
the lateral distance between the nanowire and the quantum dot becomes sufficiently
small (⪅ 100 nm), coupling is demonstrated by launching surface plasmons through
quantum dot luminescence. High-resolution cathodoluminescence imaging determines
the lateral quantum dot–nanowire positions precisely (< 30 nm), and the
experimentally measured coupling efficiency can be explained by a simple interference
model that includes reflections of surface plasmons at the nanowire end.
Intermediate field coupling can be applied to other types of emitters in high-index
environments (e.g. nitrogen-vacancy centers in diamond), does not rely on nanostructuring
processes, and is robust against emitter–waveguide displacement, both
laterally and in growth-direction. The latter allows the use of deeply buried quantum
dots with exceptional quantum optical properties. Hence, intermediate field coupling
paves the way to a lifetime-limited, truly nanoscale single-plasmon source.
The second coupling scheme is based on the integration of single epitaxial quantum
dots into semiconductor mesa structures that are surrounded by a dielectric
layer with a lower refractive index. This approach promises increased coupling
efficiency due to a reduced distance to the plasmonic waveguide on top, and increased
propagation efficiency due to the dielectric that supports more efficiently
propagating waveguide modes. Numerical models for a disk-shaped AlGaAs mesa
(several hundred nanometers in diameter) on a silver backplane suggest that the
mesa can act as a dielectric nanoresonator that either suppresses or enhances the
quantum dot emission, which can be taken advantage of to design single-plasmon
sources with efficiencies up to 50 %. Although the optimized target structure is
feasible with advanced nanostructuring methods, an experimental realization uses
a fabrication-wise simpler design based on GaAs substrates. The nanostructure is
processed by deterministic integration of the quantum dots via in situ electron beam
lithography, planarization of the etched topography, and dispersion of colloidal silver
nanowires. Even though coupling of a mesa–waveguide hybrid structure is observed,
both coupling and propagation efficiency are affected by imperfect planarization and
consequential nanowire bending. Unlike intermediate field coupling, the mesa-based
coupling approach is technologically demanding and relies on precise and deterministic
fabrication methods. However, the nanoresonator-enhanced coupling scheme
offers unprecedented efficient single-plasmon generation and efficient propagation
through plasmonic waveguides and, therefore, opens up a path towards a scalable
plasmonic quantum circuitry.
Sanchayeeta Jana
Fluorescence-detected Two Dimensional Electronic Spectroscopy (F-2DES) of Single Molecules in Solution
Dissertation, Bayreuth (2024) online, ERef, abstract: show
We can get a clearer picture of the microcosm around us by studying individual molecules. Since a molecule is only a few angstroms (10⁻¹⁰ m) in size, we can not observe or study such tiny objects with the naked eye. For this reason, scientists have developed a variety of experimental tools to delve deep into the understanding of the behavior of individual molecules. These tools include optical and electron microscopes capable of imaging molecules. Although the optical microscope has a lower spatial resolution than its electron counterpart, the advantage of optical microscopes is that one can do optical spectroscopy simultaneously. Absorption and emission spectroscopy provide information about the electronic energy levels of the molecule, while infrared spectroscopy provides information about vibrational energy levels, revealing the molecular structure. Ultrafast pump-probe spectroscopy, in which two ultrashort pulses are used to excite and then probe the excited state of the molecule, provides dynamic information on the ultrashort timescale.
Here, we present a variant of ultrafast spectroscopy, Two-dimensional Electronic Spectroscopy (2DES) of single molecules to study the structural and dynamical properties of individual molecules. Two-dimensional electronic and infrared spectroscopy are widely used for an ensemble of molecules and have proven to be an important experimental tool for studying ultrafast energy transfer processes and linewidth broadening mechanisms. However, the implementation of this technique at the single molecule level is experimentally challenging. Because 2D spectroscopy is a nonlinear technique, one must saturate the excitation, detect the nonlinear signal contribution from a single molecule, and separate it from the linear signal from the molecule and the background signal from trillions of host molecules. Therefore, an extremely sensitive detection technique combined with powerful signal processing mechanisms is required to measure the 2D spectra of single molecules.
We use confocal fluorescence microscopy to detect fluorescence signals from individual molecules. We combine the microscope with four phase-modulated pulses with three controllable interpulse delays to excite and de-excite the molecule. Three of the four pulses create a third-order nonlinearity in the system, and the fourth pulse converts the coherence state to a population state that emits the fluorescence signal, which we then detect with a single photon counting detector. This technique, known as fluorescence-detected two-dimensional electronic spectroscopy (F-2DES), has the advantage of colinear geometry; thus, we can integrate it with an optical microscope. As the molecule interacts with the four laser pulses, there are many different interaction paths according to the Liouville-von Neumann equation. The emitted fluorescence signal contains signal contributions from all the possible pathways, and phase-sensitive detection allows the identification of different interaction pathways. We measure the fluorescence signal in the time domain as a function of the interpulse delay and convert it to the frequency domain spectra by Fourier transformation.
To generate the sequences of four phase-modulated pulses, we build a four-arm cascaded interferometer. To test our technique, we measured the 2D spectra of Rubidium (Rb), which has a very narrow absorption line, making the interpretation of the 2D spectra straightforward. We have developed a phase correction algorithm to phase correct the broadband 2D spectra. After successfully testing our setup, we measured 2D spectra of single freely diffusing CF 800 molecules in the dimethyl sulfoxide (DMSO) solution. We analyzed the nonlinear non-rephasing and rephasing spectra of CF 800 molecules and calculated the purely absorptive 2D spectra. We were able to separate the homogeneous broadening from the inhomogeneous broadening in the purely absorptive 2D spectra. The 2D spectra measured at different population times indicated coupling between different vibration levels in the molecules. We needed only about ten million photons from the freely diffusing molecules to measure the 2D spectra; this demonstrates the possibility of measuring the 2D spectra of an immobilized molecule that irreversibly photobleaches after emitting a few million photons.
In general, our method provides a wealth of information on linear and nonlinear dynamical processes of single molecules on different time scales, from femtoseconds to a few hundred seconds.
2023
Lucas Ludwig
Entwicklung eines aktiven Holraumresonators zur Detektion von Mikroplastik in hochdissipativen Medien
Masterarbeit, Bayreuth (2023), ERef
Johannes Dachs
Aufbau eines Mikormanipulators zum Transfer von monokristallinen Gold-Flocken
Bachelorarbeit, Bayreuth (2023), ERef
Tina Hammerschmidt
Farbzentren in Diamant als Quantensensor
Bachelorarbeit, Bayreuth (2023), ERef
Julian Alin
Graustufen-Lithografie für plasmonische Wellenleiter
Masterarbeit, Bayreuth (2023), ERef
2022
Kathrin Ständer
Photostabilität von einzelnen Dibenzothiophen-Molekülen bei Anregung mit kurzen Laser-Pulsen
Bachelorarbeit, Bayreuth (2022), ERef
Svenja Hofmann
Entwicklung, Charakterisierung und Anwendung eines 3D-gedruckten Gitterspektrometers
Bachelorarbeit, Bayreuth (2022), ERef
Tim Pfadenhauer
Numerical Optimization of the Coupling Between a Quantum Dot and a Plasmonic Waveguide on a Semiconductor Substrate
Masterarbeit, Bayreuth (2022), ERef
Kilian Wittmann
Abbildung der nichtlinearen Antwort von plasmonischen Nanostrukturen
Masterarbeit, Bayreuth (2022), ERef
Andreas K. Schmid
Winkelaufgelöste Spektroskopie periodischer plasmonischer Nanostrukturen
Masterarbeit, Bayreuth (2022), ERef
Christian Schörner
Crystalline Silver Plasmonic Nanocircuitry for Efficient Coupling with Single Organic Molecules
Dissertation, Bayreuth (2022) online, ERef, abstract: show
Quantum emitters such as atoms, quantum dots or single organic molecules, with a size of a few Angström to a few nanometer, are among the tiniest light sources imaginable.
The coupling of a single quantum emitter to an optical waveguide is particularly interesting, as the quantum mechanical state of the emitter can be accessed and
modified via optical signals propagating along the waveguide. At room temperature, the interaction of a quantum emitter embedded in a solid with light is typically a
weak effect, as the cross-section for absorption and scattering is by many orders of magnitude smaller than a diffraction-limited spot of light. Future applications of the waveguide-emitter system in nanophotonic circuitry, however, require an efficient coupling of the emitter and the waveguide circuit in order to achieve a successful
implementation of functionalities, such as the realization of a single-photon transistor. Plasmonic nanostructures from noble metals break the diffraction limit by mixing
optical fields with electronic excitations and thus promise to open up regimes of much more efficient light-matter interaction by confining the light to the position of
the quantum emitter. In this regard, this thesis considers complex-shaped plasmonic nanocircuits fabricated from crystalline silver in order to realize an efficient emitterwaveguide junction in the visible spectral range. To address this issue, high-quality materials and nanofabrication protocols are required, sensitive experimental setups are designed and operated, and comprehensive numerical modeling is performed to
compare theoretical expectations with experimental results.
At first, different numerical models are presented, which allow to calculate fundamental properties of plasmonic nanostructures. These include absorption and scattering
calculations, eigenmodes of waveguides, propagation parameters, incoupling and collection efficiencies, and the full three-dimensional simulation of dipole-emission
near a plasmonic waveguide. Furthermore, the theoretical framework for far-field imaging is briefly reviewed and implemented numerically. The following part is dedicated to high aspect ratio single-crystalline silver flakes,
which form the general basis of all plasmonic nano-constructs throughout this thesis. Chemical synthesis protocols are presented that allow to fabricate laterally large (several 10 µm) but thin (< 100 nm) flakes of extraordinarily high quality. This quality is characterized by an elemental composition of pure silver, single-crystallinity across the whole structure and a truly atomically-smooth surface. Therefore, the flakes are
ideal platforms for the top-down fabrication of plasmonic nanostructures of nearly arbitrary shape by focused ion beam milling. Furthermore, atomic layer deposition of
few-nanometer cover layers is applied to protect the flakes and nanostructures from degradation. Based on these new opportunities of nanofabrication with single-crystalline silver, in the next part, the first successful fabrication and application of a complex-shaped silver plasmonic circuit is presented. Its central waveguide part is given by two silver nanowires separated by only 60 nm. By using silver instead of the conventionally used gold, the circuit can operate in the visible spectral range where a variety of dye
molecules with high fluorescence quantum yield exists. A tiny (~20 nm) polystyrene bead doped with a few tens of fluorophores is attached to the circuit and its excitation
is found to depend sensitively on the excited near-field close to the structure. Further, a controlled remote excitation of the bead via different coherent superpositions of waveguide modes, as well as the subsequent efficient funneling of the majority of the fluorescence (~63 %) back into the waveguide, is demonstrated. In the following chapter, single organic dye molecules located inside the 60nm gap between two silver nanowires are investigated. A newly constructed optical setup allows to detect for the first time a single-molecule nonlinearity in a plasmonic waveguide. This effect is demonstrated fully remotely, i.e., by applying the necessary optical pulse-sequence via propagating plasmonic modes traveling along the waveguide gap toward the molecule. A strong drop in the single-molecule fluorescence emission by stimulated emission is detected, signaling a nonlinear plasmon-plasmon interaction
in the waveguide at the single molecule. Particularly, due to the plasmonic field confinement, the efficiency of triggering the stimulated emission transition is found to
be about 30 times higher in the waveguide compared to a diffraction-limited Gaussian focus. Finally, isolated crystalline silver nanowires in a few nanometer distance to an underlying silver flake surface are investigated with regard to the extreme light-confinement in the gap. In particular, along the short nanowire axis, the structure represents a nanoscale metal-insulator-metal Fabry-Pérot cavity for gap-plasmons with a length of 20-30nm and a height of about 2nm only. The resonances of several silver cavities are investigated experimentally, finding a good agreement with numerical scattering simulations. Furthermore, an optical setup is presented that probes the reflected light from the sample with an auto-balanced photodetector, reaching a sensitivity of about
1E-6 at 1 Hz bandwidth. First steps and measurements toward such an ultra-sensitive probing of plasmonic nano-cavities are performed, with the future goal of enhancing
the coherent light-matter interaction of single quantum emitters placed in the hot-spot region.
Valentin Dichtl
Anrege-Abfrage-Spektroskopie mit sehr hoher Repetitionsrate
Masterarbeit, Bayreuth (2022), ERef
Julian Obermeier
Ultrafast Nonlinear Spectroscopy of Nanostructures
Dissertation, Bayreuth (2022) online, ERef, abstract: show
Nanostructures like subwavelength metal nanoparticles or quantum dots build the bridge between the atomic length scale and the macroscopic one. Although they consist of thousands of atoms, they show properties only explainable by quantum mechanical approaches. Nowadays, those systems are widely used in commercially available technologies but are still object of scientific research, even down to the clarification of fundamental physical questions. The formation of strongly coupled systems, formed by two or more nanostructures, sources for entangled photons and the nonlinear response of nanosystems are topics of worldwide research in the field of nanooptics. Especially the later offers many open questions and often it is not clear, if restrictions like, e.g., symmetry restrictions from the macroscopic scale still hold in the nanoscopic universe. We address some of those open questions in this thesis experimentally as well as theoretically. The use of ultrafast pump-probe techniques allow us to reveal temporal dynamics on the femto second timescale, while spectroscopic measurements complete the picture. For theoretical modeling, we combine intuitive analytical models with numerical approaches like optimization algorithms and the Finite Element Method. Our research ranges from isolated gold nanoparticles over complex waveguide-like nanocircuits to layered semiconductor structures with embedded quantum dots.
The first two chapters lay a basis of physical framework for the later investigated topics. The field of plasmonics is embedded in the theory of electromagnetism and we give an insight in the field of nonlinear optics. Moreover, we introduce computational electrodynamics with a focus on the Finite Element Method and nanostructures that are of interest in the subsequent work.
The following two chapters focus on second-harmonic generation on the nanoscale. We demonstrate theoretically and experimentally, that the current understanding has to be expanded. In contrast to the past understanding, subwavelength particles made of a symmetric material do not necessarily have to possess a geometrical asymmetry to emit second-harmonic light. In fact, it is already sufficient if an optical or plasmonic mode of appropriate symmetry is present. We prove our hypothesis in a complex plasmonic nanocircuit, carefully exclude influences that could weaken our statement and, moreover, explore the nonlinear operation of the nanocircuit to its full extend. The later is described by an intuitive analytical model.
The next chapter marks the transition towards time resolved experimental techniques. We investigate the temporal dynamics of a low density, quantum dot based semiconductor saturable absorber mirror. We reveal time constants of the recovery process after saturation and determine characteristic constants of the saturation process itself, offering enough information for a future application as mode locking device in an ultrafast red emitting vertical-external-cavity surface emitting laser. Moreover, we also conduct experiments with varying wavelength, that reveal the structure's behavior in spectral proximity to the desired operation wavelength.
The last chapter of the thesis focuses again on plasmonic nanostructures but lays focus on the temporal dynamics of quasi free, hot electrons and their role in nonlinear optical processes. Up to now, this relation, as well as the connection to the bandstructure of the material itself, remains rather unclear. We present our experimental approach, involving a multi-color pump-probe setup. We create hot electrons in the conduction band with a 400nm pump pulse, probe the structure with a delayed infrared probe pulse and investigate the impact on the nonlinear signals. Namely, second-harmonic generation, third-harmonic generation and multi-photon luminescence. We observe partly differing changes in all three of them regarding the sign of the modulation as well as recovery and decay times. In the subsequent measurements, we sacrifice the spectral information for a better signal-to-noise ratio by a Lock-In detection scheme with a single photon counting device. Therefor, we focused on the dominating signal, given by changes in the photo luminescence. We investigate excitation power dependent changes in the pump-probe peak and present first steps towards a theoretical model involving a two-temperature model for the thermalization of the generated hot electrons. Moreover, we present a technique for ultrafast multi-color pulse characterization. We use difference-frequency generation in order to obtain cross-correlation frequency resolved optical gating traces from nonlinear micro crystals and also gold nanorods themselves in the sample plane of the experiment.
2021
Felix Schablitzki
Raster-Kraft-Mikroskopie mit einer Kelvin-Sonde
Bachelorarbeit, Bayreuth (2021), ERef
Julius Hlawatsch
Simulating the Optical Properties of Nanosystems using the Discrete Dipole Approximation
Bachelorarbeit, Bayreuth (2021), ERef
Sophie Meißner
Angle-resolved emission of structured plasmonic waveguides
Bachelorarbeit, Bayreuth (2021), ERef
Michael Stur
Einzelmolekülspektroskopie an plasmonischen Oberflächen
Bachelorarbeit, Bayreuth (2021), ERef
Simon Durst
Excitonic Coupling to Surface Lattice Resonances : Experiment and Simulation
Masterarbeit, Bayreuth (2021), ERef
Niklas Stenger
Numerische Methoden zur Simulation mittels Nanoobjekten modulierter Fluoreszenz von Cadmiumselenid-Nanoemittern
Masterarbeit, Bayreuth (2021), ERef
Fabian Paul
Shaping ultrashort laser pulses for pump-probe spectroscopy
Masterarbeit, Bayreuth (2021), ERef
Sebastian Matt
Synthese und Charakterisierung von flachen Gold-Einkristallen für die Plasmonik
Bachelorarbeit, Bayreuth (2021), ERef
2020
Johannes Klier
Lineare und nichtlineare Spektroskopie an Goldnanostrukturen und Graphen
Masterarbeit, Bayreuth (2020), ERef
Kilian Wittmann
Anregung von Molekülen mittels der dritten Harmonischen von plasmonischen Partikeln
Bachelorarbeit, Bayreuth (2020), ERef
Julian Alin
Spin-on-Glas-Schichten zur Planarisierung nanoskaliger Strukturen
Bachelorarbeit, Bayreuth (2020), ERef
2019
Jonas Jürgen Albert
Aperturlose Nahfeldmikroskopie fluoreszierender Nanoobjekte
Dissertation, Bayreuth (2019) online, ERef, abstract: show
Die vorliegende Arbeit befasst sich mit der Inbetriebnahme und dem optisch erweiterten Aufbau eines Rasterkraftmikroskops, welches Licht-Materie-Wechselwirkung unterhalb der Auflösungsgrenze des Lichts ermöglicht. Mit diesem Setup werden individuelle halbleitende und organische Nanostrukturen untersucht, deren Eigenschaften sie interessant für neue Nanotechnologien machen. Dabei stehen vor allem ausgedehnte Zustände, entweder durch entsprechende Wechselwirkung zwischen den Strukturen oder innerhalb eindimensionaler Nanodrähte im Fokus, da hier effizienter Energietransport möglich ist. Dabei wird das Verhalten von Nanoobjekten mit einer Größe von nur wenigen Nanometern deutlich von deren Geometrie und dem dielektrischen Umfeld beeinflusst. Standardmäßige optische Spektroskopie liefert jedoch keine Auskunft über strukturelle Einzelheiten der Objekte in dieser Größenordnung. Durch die Verbindung von zeitaufgelöster Photoemission und Rasterkraftmikroskopie bietet unser Aufbau räumlich hochauflösende optische Spektroskopie, welche direkt mit Topographie-Informationen korreliert ist. Dabei wird die Möglichkeit einer gezielten Manipulation der Umgebung dazu genutzt, um die Emissionseigenschaften der Nanoobjekte zu ändern und zu untersuchen.
Im ersten Teil der Arbeit wird auf die Methode der optischen Nahfeldmikroskopie eingegangen, dessen Herzstück ein Rasterkraftmikroskop darstellt. Hierbei werden verschiedene Betriebsmodi und grundlegende Rauschquellen diskutiert. Im Anschluss wird eine weitere Methode, die Kelvin-Probe-Force-Mikroskopie vorgestellt, welche einen Einblick auf unterschiedliche Austrittsarbeiten der Elektronen an Oberflächen liefert und so helfen kann, erzeugte Ladungsträger und deren Ausbreitung in den Strukturen darzustellen. Bei den drei genannten Rastersonden-Mikroskopie-Methoden dient eine metallische Spitze als Sonde, weshalb sie während einer Messung simultan eingesetzt werden können, um so maximale Information über die Probe zu erhalten.
Der nächsten Abschnitt befasst sich mit dem experimentellen Aufbau des optischen Nahfeldmikroskops. Dabei wird das Rasterkraftmikroskop getestet und mit einem invertierten optischen Fluoreszenzmikroskop vereint. Um die notwendige Auflösung zu erhalten, werden Rauschquellen identifiziert und minimiert. Außerdem werden Details zu den wichtigsten verwendeten Messmethoden, beispielsweise Time-Correlated-Single-Photon-Counting bezüglich der Position der Nahfeldsonde, sowie der Kraftsensorkalibration und Mikroskop-Justage erläutert. Aufgrund ihrer Rolle für die Datenanalyse bei der Rasterkraftmikroskopie wird auch eine grundlegende Bildbearbeitung von Topographiemessungen vorgestellt.
Im Folgenden wird mit dem Aufbau der Einfluss einer Goldspitze auf die Emissionseigenschaften einzelner CdSe-Nanokristalle gemessen. Um das vorherrschende Quenching des Signals nachvollziehen und erklären zu können, dient ein analytischen Modell, welches zusätzlich durch Finite-Elemente-Simulationen bekräftigt wird. Es zeigt deutlich, wie das Quench-Verhalten von der Distanz zwischen Spitze und Probe, Spitzengeometrie, Polarisation des Emitterdipols und der Wellenlänge abhängt. Aufgrund der Stabilität des Verhaltens kann es zur genauen Justage des Mikroskops verwendet werden. Im weiteren Schritt werden kleine Nanokristallansammlungen untersucht, wobei die hohe räumliche Auflösung die Bestimmung der Emitteranzahl deutlich verbessert. Diese Ansammlungen zeigen ein ähnliches Lumineszenzauslöschung-Verhalten, wobei es mit steigender Anzahl zunehmend zu Abschirmeffekten kommt.
Im nächsten Abschnitt werden CdSe-Nanodrähte untersucht, da aufgrund ihrer zweidimensionalen Einengung eine hohe Ladungsträgermobilität entlang ihrer Achse erwartet wird. Durch den Einfluss einer Goldspitze kann gezeigt werden, dass diese Drähte ausgedehnte Exzitonzustände besitzen und damit energieeffizienten Energietransport über Mikrometer gewährleisten können. Jedoch deutet bereits das unterschiedliche optische Verhalten der Drähte ihre Inhomogenität an. Entsprechend können auch ausgedehnte Zustände nur bei einer sehr geringen Anzahl an Drähten beobachtet werden. Damit dieses Verhalten also gezielt eingesetzt werden kann, müssen die Nanodrähte, welche ausgedehnte Zustände besitzen, reproduzierbar hergestellt werden können.
Der letzte Teil der Arbeit behandelt das Emissionsverhalten von Polydiacetylen-Nanoröhrchen unter dem Einfluss einer Goldspitze. Diese besitzen aufgrund ihrer selbstorganisierten Anordnung eine hoch geordnete Struktur, womit auch das Verhalten gleicher Nanoröhrchen kaum divergiert. Hierbei existieren zwei Konformationen von Polydiacetylen, wobei die rote stark emittierend und die blaue dunkel ist. Deshalb versprechen die blauen Röhrchen energieeffizient beim Ladungstransport zu sein. Durch eine kontrollierte Manipulation der Umgebung mit der Goldspitze kann eine verstärkte Emission und eine Veränderung des Spektrums beobachtet werden, wobei diese auf spitzenverstärkte Ramanstreuung zurückgeführt werden kann.
Christoph Schnupfhagn
Four-wave mixing spectroscopy with shaped laser pulses
Masterarbeit, Bayreuth (2019), ERef
Lucas Ludwig
Modulationsspektroskopie einzelner Nanopartikel
Bachelorarbeit, Bayreuth (2019), ERef
2018
Fabian Paul
Antennen für plasmonische Wellenleiter
Bachelorarbeit, Bayreuth (2018), ERef
Julia Lang
Erzeugung der dritten Harmonischen in Metallfilmen : Einfluss der Dünnfilminterferenz
Bachelorarbeit, Bayreuth (2018), ERef
Fabian Rottmann
Kopplung von Quantenpunkten an plasmonische Wellenleiter
Bachelorarbeit, Bayreuth (2018), ERef
Simon Durst
Angle-resolved transmission spectroscopy of plasmonic nanostructures
Bachelorarbeit, Bayreuth (2018), ERef
Hannah Bleiner
Aufbau eines Praktikumsversuchs zur dopplerfreien Sättigungsspektroskopie von Rubidium
Bachelorarbeit, Bayreuth (2018), ERef
Moritz Heindl
Aufbau und Charakterisierung eines Pulsformers
Masterarbeit, Bayreuth (2018), ERef
Patrick Pietsch
Entwicklung eines Faserinterferometers
Masterarbeit, Bayreuth (2018), ERef
Chiara Bauer
Hochauflösende Spektroskopie von Quantensystemen
Masterarbeit, Bayreuth (2018), ERef
Felix Baier
Resonanzfluoreszentspektroskopie an einzelnen Quantenpunkten
Bachelorarbeit, Bayreuth (2018), ERef
Jannik Kantelhardt
Spektroskopie der photoinduzierten Kraft zwischen plasmonischen Nanostrukturen
Bachelorarbeit, Bayreuth (2018), ERef
Heide-Maria Huber
Umgestaltung des Physik-Anfängerpraktium-Versuchs "Gekoppelte Pendel"
Zulassungsarbeit, Bayreuth (2018), ERef
2017
Anna Ehrsam
Spektroskopie eines Goldnanopartikels auf einem Goldfilm
Bachelorarbeit, (2017), ERef
Sofie Krietenstein
Plasmonische Wellenleiter : Simulation und Experimente
Bachelorarbeit, (2017), ERef
Christian Dicken
Confocal Microscopy and Spectroscopy of Single Nanomagnets and Quantum Emitters
Dissertation, Bayreuth (2017) online, ERef, abstract: show
This thesis is embedded in the realm of single nanoparticle microscopy and spectroscopy. We combine confocal microscopy, ultrafast pulsed lasers and homodyne amplification to make the signature of single
nanoparticles and quantum emitters visible. These techniques allow
us to observe and manipulate the physical state of quantum dots
on picosecond timescales, and we show that the spectral signatures
found in our experiments compare well with what we expect from
the dynamics of a three-level quantum emitter. These emitters are candidates as nodes of optical networks. Furthermore, we utilize homodyne amplification to analyze the magnetization of single nickel disks
and develop a model that is able to predict the optical response of the
disks when being embedded in the sample structure. The model allows
us to separate the magnetic properties of the nanomagnets from
the optical properties of the complete structure.
Julian Obermeier
Nonlinear spectroscopy of propagating surface plasmons
Masterarbeit, Bayreuth (2017), ERef
2016
Simon Streit
Leistungsstabilisierung und Modulation eines durchstimmbaren Lasersystems
Bachelorarbeit, (2016), ERef
Daniela Wolf
Optical Spectroscopy of Graphene and Gold Nanostructures
Dissertation, (2016) online, ERef, abstract: show
This thesis covers two prominent material systems in the still emerging field of nano-optics. On the one hand, we study the optical properties of graphene, from a general point of view as well as under symmetry breaking induced by strain. On the other hand, we make use of the plasmonic properties of gold nanostructures and investigate the generated nonlinear signals on a local scale. With both systems being promising candidates for nanophotonic applications, a spectroscopic investigation is of utmost importance to gain a deeper understanding of the interaction of these systems with light.
Graphene’s band structure exhibits a saddle point, which gives rise to a unique optical response in the visible and ultraviolet wavelength regime. Assuming a discrete excitonic state in the vicinity of the saddle point, a classical Fano model based on interference between a continuum of states and the discrete state can be applied. It reproduces very well both lineshape and position of the measured spectrum even down to infrared wavelengths. After a discussion of the general optical properties, we study the influence of strain on graphene. Unlike most other modifications, strain breaks the symmetry of the lattice and the band structure and is hence predicted to induce profound changes in the optical spectrum. In addition to a study of the response considering different substrate materials, we introduce Raman spectroscopy as a reference measurement to reliably quantify the amount of strain applied to the graphene flakes. However, our thorough investigations indicate that the Fano resonance in graphene is very robust towards strain as we do not observe strain-induced changes in the optical spectrum.
The second part of this thesis addresses the nonlinear optical properties of gold nanostructures. Whereas most investigations in nonlinear plasmonics focus on the enhancement of nonlinear processes and their spectral characteristics, we consider the spatial origin of the signals which is still under debate. Due to the coherence of the higher harmonics generation process, the third-harmonic emission from different emitting centers of a nanostructure interferes. In analogy to classical diffraction experiments, the interference pattern observed in the Fourier plane is very sensitive towards parameters such as separation and relative phase of the emitting spots. We use this method to accurately determine the high fields inside the nanostructures as the source of third-harmonic generation. Moreover, we show that the emission properties of an elongated plasmonic structure can be switched between a configuration with one emission spot in the center and a configuration with two spatially separated spots by slightly varying the excitation wavelength. Due to the third power dependence of the third-harmonic generation process, the near-fields generated in the vicinity of the particle switch accordingly. While assemblies of nanoparticles are commonly used to shape fields, we show that the local field can also be sculptured around a single, elongated nanostructure by taking higher-order plasmonic modes into account. This approach opens up a new direction for field shaping on the nanoscale.
Marvin Berger
Optical spectroscopy of single units of semiconductor nanocrystal aggregates
Masterarbeit, (2016), ERef
Laura Meißner
Charakterisierung von ein- und zweidimensionalen plasmonischen Wellenleitern
Masterarbeit, (2016), ERef
Jessica Koller
Ortsaufgelöste Spektroskopie dünner Farbstofffilme zur Kopplung an plasmonische Oberflächen
Masterarbeit, (2016), ERef
Matthias Brandstetter
Apertureless Scanning Nearfield Optical Microscopy with Ultra-high Temporal Resolution
Dissertation, Bayreuth (2016) online, ERef, abstract: show
By combining an apertureless scanning nearfield optical microscope (aSNOM) with
a pump probe scheme, we create a novel experimental tool called pump probe apertureless
scanning near field optical microscope (ppaSNOM), that combines a temporal
resolution of 1ps with a spatial resolution of 20nm. This alloptical technique
far below the diffraction limit of light allows to study ultrafast processes on the
nano scale. As a proof of principle system we choose the mechanical oscillations exhibited
by gold nano discs that are impulsively heated through a short pump pulse.
First we provide the theoretical foundation needed to understand the optical and
mechanical properties of gold nano particles. In particular we use a FEM solver
to predict the mechanical properties as well as the field distributions of gold nano
discs promising high signal contrast for the experiment operating at 800nm. Furthermore
the absorption and scattering cross section calculated with the T-Matrix
are used to derive the ideal sample structure. Before aSNOM and farfield pump
probe scheme are combined, we characterize them separately. The aSNOM is an interferometric
technique that collects light scattered of a dielectric AFM tip. It allows
for the simultaneous acquistion of the sample topography, magnitude and phase of
the z-component of the electrical nearfield with a spatial resolution of 20nm. The
aSNOM measurements of a gold disc with 100nm radius and 50nm height reveal a
dipolar plasmon resonance which agrees very well with FEM simulations. In a next
step we apply the pump probe measurement scheme to gold nano discs. The impulsive
heating of a gold nano disc through a short pump pulse starts mechanical
oscillations in the disc. As the volume changes periodically, the optical properties
are modulated by the mechanical mode. In this experiment we measure the
transient transmission signal of an individual gold nano disc. Changing the delay
between pump and probe reveals an oscillatory delay trace as expected. The data
analyzation reveals a mechanical oscillation frequency of 10GHz which we can attribute
to the first order breathing mode in agreement with FEM simulations. In a last step we combine the aSNOM with the pump probe scheme in order to create
a tool with 1ps temporal and 20nm spatial resolution. As a proof of principle measurement
we are looking for a pump induced perturbation of the nearfield signal.
We use FEM calculations to simulate the 2D distribution of the nearfield perturbation
which reveals a dipolar shape. The measurements of several gold discs show
no differential nearfield response. Instead we see a ring like structure in the differential
nearfield signal that overlaps with the AFM topography. We conclude that
the ring structure is an AFM artefact and that our signal is buried in the noise floor.
We use the measurement data to estimate an upper limit for the relative pump induced
perturbation. The results agree with T-Matrix simulations which suggest
that an increase in relative sensitivity by a factor of 10¯² is needed. By reaching the
shot noise limit with our ppaSNOM and modifying certain aspects, the detection
of timeresolved nearfield signals seems feasible. Some ideas for possible modifications
to the ppaSNOM, such as an increase in collection efficiency of the objective
or the replacement of the dielectric AFM tip by a metallic tip, are given in the end.
Due to time constraints an implementation of the modifications was not possible.
Max Theisen
Aufbau und Anwendung eines Plusformers für ultrakurze Laserpulse
Bachelorarbeit, (2016), ERef
Johannes Weißert
Dispersionsrelation von Oberflächenplasmonen
Zulassungsarbeit, (2016), ERef
Michael Seidel
Entwurf, Herstellung und Charakterisierung eines plasmonischen Wellenleiters
Bachelorarbeit, Bayreuth (2016), ERef
Marco Klement
A fiber interferometer for near-field microscopy
Masterarbeit, (2016), ERef
Christoph Schnupfhagn
Interferenz nichtlinearer Emission von Gold-Nanostrukturen
Bachelorarbeit, (2016), ERef
2015
Jonas Jürgen Albert
Entwicklung und Aufbau eines optischen Nahfeldmikroskops
Masterarbeit, Bayreuth (2015), ERef
Alexander Neufeld
Characterization of two synchronized laser oscillators
Masterarbeit, (2015), ERef
Daniel Sommermann
Entwicklung von Goldspitzen für ein Rastersondenmikroskop
Bachelorarbeit, Bayreuth (2015), ERef
2014
Thorsten Schumacher
Optical Nanoantennas for Ultrafast Nonlinear Spectroscopy of Individual Nanosystems
Dissertation, Bayreuth (2014) online, ERef, abstract: show
Die Arbeit befasst sich mit der ultraschnellen nichtlinearen Dynamik verschiedener Prozesse in individuellen metallischen und halbleitenden Nanostrukturen, ohne die Mittlung über Ensembles. Nanoobjekte mit einer Größe von nur wenigen Nanometern
zeigen außergewöhnliche lineare wie auch nichtlineare optische Eigenschaften. Die zeitabhänginge Abweichung von linearer Licht-Materie Wechselwirkung wird mittels ultraschneller nichtlinearer Spektroskopie untersucht, bei einer Zeitauflösung von weniger als einer Pikosekunde. In der Erforschung einzelner Nanoobjekte, wie Quantenpunkte, Moleküle oder Nanopartikel, ist das bereits schwache nichtlineare Signal von makroskopischer Materie weiter verringert. Optische Nanoantennen, bestehend aus plasmonischen Nanoobjekten, erhöhen lokal die Licht-Materie Wechselwirkung und bieten ein neues Hilfsmittel um zuvor unzugängliche Größen des Nanokosmos zu untersuchen. Die Entwicklung und Anwendung solcher Antennen zur Verstärkung ultraschneller nichtlinearer Signale von einzelnen Nanoobjekten soll erstmalig umgesetzt werden und erfordert hochsensitive experimentelle Methoden und eine gezielte Modellierung und Optimierung wobei numerischen Lösungsverfahren und Modellbildung zum Einsatz kommen.
Im ersten Teil der Arbeit wird auf unsere Methode der hochsensitiven ’zeitabhängigen differenziellen Transmissions-Spektroskopie’ eingegangen, gefolgt von den Erweiterungen für zeitaufgelösten ’Einzelphotonen Photolumineszenz-Spektroskopie’ und ’Dunkelfeld-Spektroskopie’. Weiterhin bieten wir einen Überblick über die entwickelten und angewandten numerischen Modelle, welche als Basis unserer theoretischen Arbeit dienen. Im Besonderen wird ein Modell zur Vorhersage der polarisationsabhängigen Emission höherer Harmonischer von komplexen Nanostrukturen vorgestellt und diskutiert.
Der nächsten Abschnitt befasst sich mit der erstmaligen Realisierung einer optischen Nanoantenne zur Verstärkung eines extrem schwachen nichtlinearen Signals. Zu diesem Zweck verwenden wir die zeitabhängige Modulation der optischen Eigenschaften eines einzelnen Gold-Nanopartikels, verursacht durch dessen mechanische Oszillationen. Die Antenne wird durch eine zweite, größere Nanostruktur realisiert und befindet sich im Abstand von nur wenigen Nanometern zum untersuchten Nanopartikel.Die Wechselwirkung zwischen beiden Nanoobjekten und die angestrebte
Antennenverstärkung kann im Rahmen der Plasmonhybrisierung verstanden werden. Dabei wird das schwache, nichtlineare Signal des Nanopartikels auf das starke Trägersignal der Antenne moduliert. Wir bieten eine detaillierte Einführung in die theoretische Modellierung und experimentelle Analyse. Die gute Übereinstimmung bestätigt die Analogie zu bekannten Radiofrequenzantennen die bei niedereren Frequenzen arbeiten.
Im Weiteren ermöglicht unsere hochsensible Methode zum ersten Mal die spektral aufgelöste Untersuchung von ultraschnellen Ladungsträgerdynamiken innerhalb
quantisierter Zustände eines einzelnen CdSe Nanodrahtes. Wir messen das anregungsinduzierte Bleichen unterschiedlicher Exzitonenübergänge und erhalten Einsicht
in zuvor versteckte Prozesse und Größen wie zum Beispiel die zeitabhängige Population verschiedener Zustände. Die beobachteten Phänomene spielen sich auf unterschiedlichen Zeitskalen ab und werden im Einzelnen diskutiert. Weiterhin finden wir Hinweise für Reabsorptionsprozesse von emittierten Photonen. Zuletzt untersuchen und diskutieren wir die Wechselwirkung zwischen einem einzelnen CdSe
Nanodraht und einer plasmonischen Antenne.
Der letzte Teil der Arbeit bietet eine allgemeine Diskussion von optischen Nanoantennen. Zu diesem Zweck verwenden wir einen Punkt-Dipol Ansatz auf Basis der
’Discrete Dipole Approximation’, um im Weiteren besonderen Wert auf die elementaren Wechselwirkungsmechanismen zwischen Nanopartikel und Antenne zu legen. Weiterhin erlaubt uns der stark reduzierte Rechenaufwand riesige, zuvor unzugängliche Parameterräume zu analysieren. Wir verwenden die Methode und diskutieren die relevanten Eigenschaften einer optischen Nanoantenne mit maximaler Effizienz. Mittels der Implementierung eines genetischen Algorithmus bieten wir einen ersten Schritt zum Auffinden optimaler Mehr-Teilchen Antennengeometrien.
Christoph Soldner
Hochgeschwindigkeitsdatenerfassung einer Zeilenkamera für ein Laserspektrometer
Bachelorarbeit, (2014), ERef
Julian Obermeier
Implementierung eines optisch- parametrischen Oszillators zur Anregungsspektroskopie
Bachelorarbeit, Bayreuth (2014), ERef
Christian Schörner
Schaltbare Wechselwirkung zwischen photochromen Dithienylethen und plasmonischen Nanostrukturen
Bachelorarbeit, (2014), ERef
Verantwortlich für die Redaktion:
Univ.Prof.Dr. Markus Lippitz